The UK's innovation agency

Innovate UK

Building our #IndustrialStrategy

Thinking about the future

The Faraday Battery Challenge: Accelerating the UK EV Battery Industry

Anna Wise

Lithium: From Exploration to End-User

10th April 2018

Innovate UK

Innovate UK – the UK's innovation agency

We work with people, companies and partner organisations to find and drive the science and technology innovations that will grow the UK economy - delivering productivity, new jobs and exports.

Our aim at Innovate UK is to **keep the UK globally competitive** in the race for future prosperity.

Investment of since 2007

industry match funding taking the total value of projects above

£3.75bn

Up to

£16bn

in added value to the economy

up to £7.30

We've funded around projects

unique organisations involved

for every **£1** we've invested.

70,000 jobs created in total

Industrial Strategy Grand Challenges

Al and Data Economy

Healthy ageing

Clean growth

Future of mobility

Creating an economy that boosts productivity and earning power throughout the UK

Industrial Strategy Challenge Fund

- Builds on the UK's world-class research base and delivers the science that business needs to transform existing industries and create new ones
- Accelerates commercial exploitation of the most exciting technologies
 the UK has to offer the world to ensure that scientific investment truly
 delivers economic impact, jobs and growth right across the country
- Programmes delivered by the fund will be industry-led and powered by multi-disciplinary research and business-academic collaboration
- Delivered by Innovate UK and Research Councils UK, and eventually UK Research and Innovation, the single voice for the UK's research and innovation landscape

First Wave of ISCF

Medicines manufacturing technologies

Robots for a safer world

Batteries for clean and flexible energy storage

Self-driving vehicles

Manufacturing and materials of the future

Satellites and space technology

The next wave of the Challenge Fund

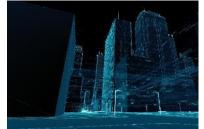
Transforming construction

Energy revolution

Data to early diagnosis & precision medicine

Healthy ageing

Transforming food production


Audience of the future

Next generation services

Quantum technology

Delivered by

UK Research and Innovation

How the ISCF challenges fit with the Industrial Strategy Grand Challenges

Clean growth

Energy revolution

Transforming construction

Transforming food production

Healthy ageing

Medicines manufacturing

Data to early diagnosis and precision medicine

Healthy ageing

Future of mobility

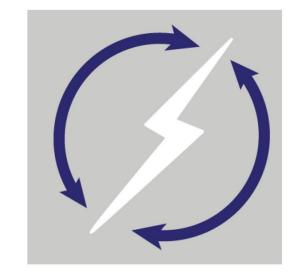
Faraday battery challenge

Extreme robotics

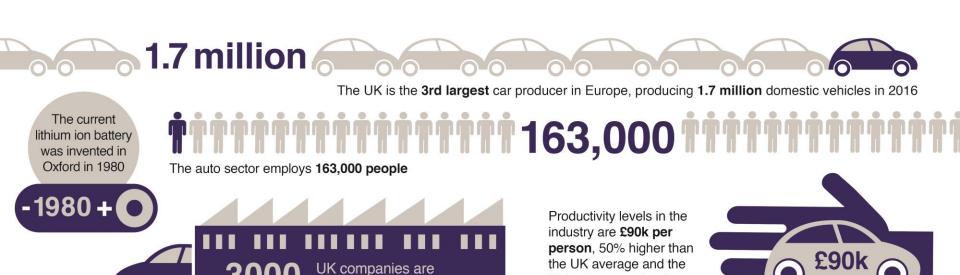
National space test facility

Artificial intelligence and data economy

Audience of the future / Next generation services (pioneer) / Quantum technology (pioneer)

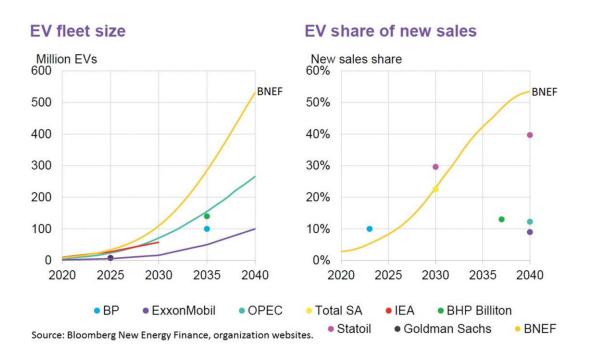


Clean and flexible energy – the Faraday Battery Challenge


The <u>Faraday Battery Challenge</u>, part of the <u>Industrial Strategy</u> <u>Challenge Fund</u>:

- £246 million commitment over four years to fully exploit the industrial opportunity of vehicle electrification through worldleading batteries
- Increasing multi-disciplinary application-led research in battery technologies
- Supporting UK businesses' investment capability in research, development, demonstration, testing and manufacture of battery technology

The opportunity: why does the UK want to be world-class in automotive battery technology?

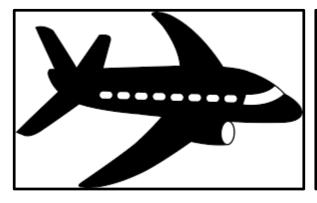

active in the auto sector

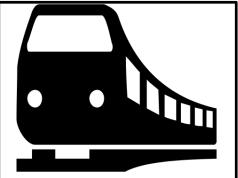
highest amongst major

car producing nations

EV Market: Exponential Growth

 By 2040, 53% of new car sales will be electric, with over 500m EVs on the road


[Source: Bloomberg New Energy Finance]


 In the UK, EVs represent 1.9% of new vehicle market (135k vehicles)

[Source: Society of Motor Manufacturers and Traders]

This is the starting point, we are looking for spill over into other sectors....

NOW \$130/kWh (cell) \$280/kWh (pack)

2035 \$50/kWh (cell) \$100/kWh (pack)

Energy Density

NOW 700Wh/l, 250Wh/kg (cell) 2035 1400Wh/l, 500Wh/kg(cell)

Power Density

NOW 3 kW/kg (pack) 2035 12 kW/kg (pack)

Safety

2035 Eliminate thermal runaway at pack level to reduce pack complexity

1st Life

NOW 8 years (pack)
2035 15 years (pack)

Temperature

NOW -20° to +60°C (cell) 2035 -40° to +80°C (cell)

Predictability

2035 Full predictive models for performance and aging of battery

Recyclability

NOW 10-50% (pack) **2035 95% (pack)**

NOW \$130/kWh (cell) \$280/kWh (pack) **2035 \$50/kWh (cell) \$100/kWh (pack)**

Energy Density

NOW 700Wh/l, 250Wh/kg (cell) 2035 1400Wh/l, 500Wh/kg(cell)

Power Density

NOW 3 kW/kg (pack) 2035 12 kW/kg (pack)

Safety

2035 Eliminate thermal runaway at pack level to reduce pack complexity

1st Life

NOW 8 years (pack)
2035 15 years (pack)

Temperature

NOW -20° to +60°C (cell) 2035 -40° to +80°C (cell)

Predictability

2035 Full predictive models for performance and aging of battery

Recyclability

NOW 10-50% (pack) 2035 95% (pack)

Raw Materials

Materials and Electrochemistry Electrode, electrolyte, separator, etc.

Cell Manufacture

Module, Pack and BMS

Vehicle Application

2nd life / Recycling

ISCF Faraday Battery Challenge

£246 million (2017-2021)

Challenge Director, Advisory Group, Programme Board

Research: £78m EPSRC

Innovate: £88m

- 'Application-inspired' research programme coordinated at national scale
- Creation of the <u>Faraday</u> <u>Institution</u> – responsible for coordination of research and training programmes
- Four 'fast-start' projects announced 23rd Jan 2018 (£42m)

 Battery Degradation, Multiscale Modelling, Recycling, Solid State Batteries

ISCF Faraday Battery Challenge

£246 million (2017-2021)

Challenge Director, Advisory Group, Programme Board

Research: £78m

EPSRC

Innovate: £88m

Innovate UK

- Innovation programme to support business-led collaborative R&D with co-investment from industry
- Address technical challenges and build UK supply chain
- £40m committed in Round 1
 (2017) to Collaborative R&D and Feasibility Study projects projects addressing range of areas from cell materials to pack integration and BMS to recycling
- £25 million Round 2 competition closed 28th March 2018

ISCF Faraday Battery Challenge

INDUSTRIAL
STRATEGY

£246 million (2017-2021)

Challenge Director, Advisory Group, Programme Board

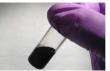
Research: £78m

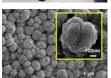
EPSRC

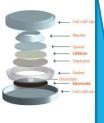
Innovate: £88m

Innovate UK

- Scale up programme to allow companies of all sizes to rapidly move new battery technologies to market
- Develop manufacturing tools and methods for mass production
- Demonstrate production-rate reliability and quality
- <u>CWLEP & WMG</u> building openaccess scale up facility: **UK** Battery Industrialisation Centre


Steps in Cell Development





Gramme Scale

Typically university scale research using small quantities of hand-made materials

Used for fundamental materials research and initial half-cell experiments at coin cell scale

Funders typically EPSRC, Faraday Institution

E.g. Oxford, UCL, Imperial, WMG

Kilogramme Scale

Typically corporate R&D lab or University / Catapult centre

Used to demonstrate scalability of materials to full size cell, and to develop electrode mixtures, deposition processes and cell formats.

Funders typically Innovate UK, EPSRC, Faraday Institution

E.g. WMG, QinetiQ

Tonne Scale

Typically full scale manufacturing facilities used at low rate. Expensive, inflexible, and impossible to access except by owner. **UKBIC provides** bespoke facility for this purpose.

Used to develop and prove materials, cell design, manufacturing processes and parameters "at-rate" prior to full plant investment

E.g. No public facility in UK or EU

Kilotonne Scale

Full scale, high volume manufacturing plant. Typically 6-50GWh/year

Used to deliver very large volumes of cells with no variation or flexibility to chemistry, format or quality. Cost/kWh and process consistency are critical

E.g. Tesla Gigafactory, LG Cheongju, Panasonic Osaka, Samsung Ulsan

UKBIC Battery Chemistries

Cathode / Anode Material	Strengths	Weaknesses
Lithium Cobalt Oxide (LCO) Cathode	High energy High power	Thermally unstable Relatively short life span Limited load capabilities
Lithium Manganese Oxide Spinel (LMO) Cathode	High power and thermal stability Enhanced safety Low cost	Low capacity compared to other cathode materials Limited life cycle Need advanced thermal management
Lithium Nickel Cobalt Aluminium Oxide (NCA) Cathode	High specific energy Good specific power Long life cycle	Safety issues Cost
Lithium Nickel Manganese Cobalt Oxide (NMC) Cathode	Ni has high specific energy; Mg adds low internal resistance Can be tailored to offer high specific energy or power	Nickel has low stability Manganese offers low specific energy
Lithium Iron Phosphate (LFP) Cathode	Inherently safe; tolerant to abuse Acceptable thermal stability High current rating Long cycle life	Lower energy density due to low operating voltage and capacity
Graphite / carbon-based Anode	Good mechanical stability Good conductivity and Li-ion transport Good gravimetric capacity	Low volumetric capacity
Lithium Titanate (LTO) Anode	Withstands fast charge / discharge rates Inherently safe Long cycle life	Lower energy density compared to graphitic anodes Cost
Silicon alloy (Si) Anode	High gravimetric / volumetric capacity Low cost Chemical stability	High degree of mechanical expansion on charging

UKBIC will be specified and equipped to handle all lithium-ion anode and cathode materials being volume manufactured today

UKBIC will be specified and equipped or protected for promising next generation chemistries within reasonable investment considerations

	Chemistry*	Properties / Benefits	Research Challenges
d n s	Solid State Batteries	Solid electrolyte and separator components; no concerns over 'leakage' Improved safety due to lack of liquid electrolyte High operating voltages increase potential energy density Lighter and more space efficient; less need for cooling	Improving poor conductivity High volume manufacturing at acceptable cost
	Metal Air Batteries e.g. Li, Al, Zn, Na	Pure metal anode and ambient air/O ₂ cathode Very high theoretical capacity Increased safety vs Li-ion No use of heavy metals	Short life cycle Issues with practical rechargeability Air handling Energy density reduces at high power
	Lithium Sulphur (Li-S)	High theoretical gravimetric energy density Sulphur is a low cost, abundant material Improved safety	Poor volumetric energy density Issues with power density and discharge rate Issues with cycle life stability
	Sodium-ion (Na-ion)	Sodium is a low cost, abundant material Improved safety for battery transportation	Issues of volumetric/gravimetric energy density compared to Li-ion
	Silicon-Based Electrodes (Si)	Si has "x10 gravimetric capacity compared to graphite Could be lighter and / or store more energy	Do not offer long cycle life Practical application constraints

ISCF Faraday Battery Challenge

£246 million (2017-2021)

Challenge Director, Advisory Group, Programme Board

Research: £78m EPSRC

- 'Application-inspired' research programme coordinated at national scale
- Creation of the <u>Faraday</u> <u>Institution</u> – responsible for coordination of research and training programmes
- Four 'fast-start' projects announced 23rd Jan 2018 (£42m) – Battery Degradation, Multiscale Modelling, Recycling, Solid State Batteries

Innovate: £88m

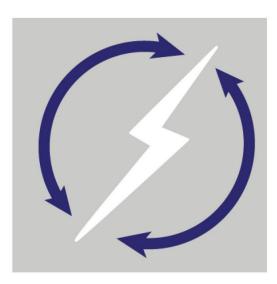
- Innovation programme to support business-led collaborative R&D with co-investment from industry
- Address technical challenges and build UK supply chain
- £40m committed in Round 1
 (2017) to Collaborative R&D and Feasibility Study projects projects addressing range of areas from cell materials to pack integration and BMS to recycling
- £25 million Round 2 competition closed 28th March 2018

- Scale up programme to allow companies of all sizes to rapidly move new battery technologies to market
- Develop manufacturing tools and methods for mass production
- Demonstrate production-rate reliability and quality
- <u>CWLEP & WMG</u> building openaccess scale up facility: **UK** Battery Industrialisation Centre

ISCF Faraday Battery Challenge

INDUSTRIAL STRATEGY

£246 million (2017-2021)
Challenge Director, Advisory Group, Programme Board



- Three elements spanning all TRLs interact to support the development of future technologies and to accelerate path to market for more mature technology
- Skills → critical to establish a workforce to support this industry
 - Programme being developed across the Faraday Battery Challenge to support skills training at all levels

Creating a UK Vehicle Battery Industry

- Phase 1 in process to fully exploit the industrial opportunity of vehicle electrification
- World-leading batteries developed, designed and manufactured in the UK
 - Establish UK battery supply chain
 - Enabling the UK to transition from internal combustion engines to EV
- Realistic needs sustained investment, coordination and collaboration
- Faraday Institution seeking industry input on future calls for research projects – www.faraday.ac.uk
- Innovation & Scale: Building UK supply chains, UK Battery
 Industrialisation Centre open-access facility operational 2020
- <u>UK Chemical Supply Chain for Battery Manufacture</u> 19th April, Darlington
- anna.wise@innovateuk.gov.uk

Thank You

Innovate UK

North Star House, North Star Avenue, Swindon SN2 1UE Tel: +44 (0)1793 442 700 Email: support@innovateuk.gov.uk www.innovateuk.gov.uk